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In this supplementary information, we provide further insight into the transduction fi-
delity of microwave one- and two-photon Fock states between three coplanar wave guide
resonators. We provide details on the sequence used to shuffle the superposition state
|0 + |1 between two resonators, as well as explain the figures of merit we used for the
transfer fidelity. In addition, we show that the exponential decay of the two-resonator
vacuum Rabi swaps fits very well with a simple harmonic-mean decay model, where both
the qubit and resonator energy relaxation times contribute to the effective decay of the
two-resonator dynamics. Our model is confirmed by Lindblad-type numerical simulations.
Finally, we explain the procedure used to correct for measurement errors and show a typical
qubit visibility experiment.

1 The chip

In order to realize three-resonator circuit quantum electrodynamics (QED) experiments, a complex
architecture must be designed and fabricated on a single chip. In the main text (cf. Fig. 1a) we display a
photograph of the sample attached to an aluminum sample holder. The main circuit elements comprise
three coplanar wave guide resonators and two superconducting phase qubits. Figure Supplementary 1
shows a detail of qubit Q1, together with its readout d.c. superconducting quantum interference device
(SQUID), control and readout lines and the coupling capacitors to resonators Ra and Rb, C1a and C1b,
respectively.

2 Photon shell game Wigner tomography

In order to unambiguously verify the high transfer fidelity of a one-photon Fock state from resonator
Ra to resonator Rc via resonator Rb, we have performed full-state Wigner tomography on Ra and Rc
for the two prototypical examples of photon shell game of Fig. 2b(ii),(iv) (cf. main text). The results
are displayed in Fig. S. 2, which shows the measured Wigner functions W (α) and corresponding density
matrices ρ̂ for the Fock state |1 stored first in Ra and then in Rc after transfer via Rb.

The Wigner function is obtained as explained in Ref. 1. The resonator is first prepared in the desired
microwave photon state |Ψ. Next the resonator is displaced by injecting a coherent state | − α with
complex amplitude α = |α| exp(ϕα), where |α| represents the coherent state real amplitude and ϕα its
phase; the state is injected through a microwave control line using a classical pulsed microwave source
(cf. Fig. 1a,b in main text). A qubit in its energy ground state is then brought into resonance with
the resonator for a variable interaction time, long enough to execute several qubit-resonator swaps. A
least-squares fit of the time-dependent oscillations in the qubit energy excited state probability allows

1



2	 nature physics | www.nature.com/naturephysics

supplementary information doi: 10.1038/nphys1885

Figure 1: Detail of qubit Q1 coupled to resonators Ra and Rb. The capacitors C1a and C1b couple qubit Q1
(gradiometer design) to resonators Ra and Rb. The qubit state is read out by a d.c. SQUID (also gradiometer design). A
portion of the control and readout lines is also visible. A micrometer scale shows the circuit dimensions.

extraction of the resonator photon number states making up |Ψ, from which the state quasi-probability
distributions can be calculated via the parity operator, giving access to full-state Wigner tomography1–4.
The amplitude and phase of the coherent state used to displace the resonator are calibrated as explained
in Ref. 1. From the Wigner function it is possible to reconstruct the density matrix of the resonator
state5 |Ψ.

Given the theoretical ρ̂th and measured ρ̂m density matrices of a resonator state |Ψ, we define the
state fidelity as F ≡ Tr{ρ̂th ρ̂m}. For the Fock state |1 prepared in Ra, with the measured Wigner
function and density matrix shown in Fig. S. 2a,c, we find F  0.84. This compares well with the fit
amplitude to the qubit-resonator swaps, which gives a fidelity F  0.86 (cf. Fig. 2 in main text). After
being transferred to Rc, the state is characterized by the Wigner function and density matrix displayed
in Fig. S. 2b,d, with fidelity F  0.64, which is also consistent with the fidelity F  0.69 found with
a least-squares fit (cf. Fig. 2 in main text). The loss of fidelity occurring during the photon transfer
between the three resonators can be attributed to qubit decoherence, due to the qubits crossing spurious
two-level systems (TLSs) and due to slight calibration errors during the swap qubit-resonator operations.
Nevertheless, it is remarkable that the density matrix associated with the state in Rc is still very pure,
with nearly negligible spurious matrix elements and only a small contribution from the |0 state.

3 Harmonic purity and
√
2 scaling for the quantum ‘Towers of

Hanoi’

Two other figures of merit for the transfer of one- and two-photon Fock states between resonators Ra,
Rb and Rc are represented by the harmonic purity of the state (i.e. absence of beatings) and the
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Figure Supplementary 2: Wigner tomography for the photon shell game. a, Measured Wigner function W (α)
for resonator Ra as a function of the complex resonator amplitude α in square root of photon number units (colour scale
bar on the far right). The inset displays a cut of the three-dimensional plot of the Wigner function. b, Same as in a,
but for resonator Rc (colour scale bar on the right). Negative quasi-probabilities clearly indicate the quantum-mechanical
nature of the intra-resonator states. c, Theoretical (grey) and measured (black) values for the density matrix associated
with the state stored in resonator Ra, ρ̂, projected onto the number states ρmn ≡ m|ρ̂|n. The magnitude and phase of
ρmn is represented by the length and direction of an arrow in the complex plane (the scale for the real and imaginary part
is reported on the far right). d, Same as in c, but for resonator Rc. When representing the density matrices, the resonator
Hilbert space has been truncated to the lowest four bosonic states.

√
2 scaling factor between the swap rates for |1 and |2 Fock states6. Such figures of merit can be

estimated by computing the fast Fourier transform (FFT) of the qubit-resonator vacuum Rabi swaps.
Figure Supplementary 3 shows the FFTs for the key steps of the photon shell game and ‘Towers of
Hanoi’, i.e. for a one-photon Fock state |1 and a two-photon Fock state |2 created in Ra and measured
with Q1, then transferred to Rb and measured both with Q1 and Q2, and finally transferred to Rc and
measured with Q2. The time-domain swaps used to compute the FFTs are shown in Figs. 2b and 3a in
the main text. Figure Supplementary 3 clearly demonstrates the harmonic purity of the states before
and after the transfers.

4 Phase coherent transfer

The photon shell game and quantum ‘Towers of Hanoi’ show that the populations, i.e. the diagonal
terms of the density matrix, of the one- and two-photon Fock states |1 and |2 can be transferred among
resonators with high fidelity. We now turn to the more subtle question whether the coherences, i.e.
the amplitudes and phases of the off-diagonal terms of the density matrix, are also preserved during a
transfer. In order to demonstrate a phase coherent transfer, we synthesized superposition states of the
form |ψϕ = |0+ eiϕ|1. Such states represent a paradigmatic example of “phase sensitive” state owing
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Figure Supplementary 3: Fourier analysis for the photon shell game and ‘Towers of Hanoi’. Top sub-panels,
normalized Fourier amplitude as a function of vacuum Rabi frequency associated with the qubit-resonator Rabi swaps for
a one-photon Fock state |1. Bottom sub-panels, normalized Fourier amplitude for a two-photon Fock state |2. Above
each column is indicated the respective qubit-resonator interaction. The dashed black line in each sub-panel indicates the
maximum Fourier component. The amplitude re-normalization is calculated with respect to the largest Fourier component
for Fock state |1 (top sub-panels) and |2 (bottom sub-panels), respectively. The

√
2 scaling1 between the |1 and |2

states is clearly visible. The absence of beatings (only a small beating, owing to some residual presence of state |1, for state
|2 in the Q2-Rb sub-panel) shows the high level of harmonic purity of the states transferred between the three resonators,
both for the photon shell game and for the more complex ‘Towers of Hanoi’.

to the presence of non-zero off-diagonal terms in the density matrix, which reads

ρ̂ϕ =
1

2


1 e−iϕ

e+iϕ 1


. (S-1)

In particular we have synthesized two orthogonal superposition states |ψX = |0+ eiϕX |1 and |ψY  =
|0+ eiϕY |1, where the respective phases differ by π/2, ϕY − ϕX = π/2.

The main steps of these phase-coherent transfer experiments, the results of which are shown in
Fig. 3b,c in the main text, are as follows:

1. Qubit Q1 is initialized in the energy ground state |g by letting it relax for a time much longer
than its energy relaxation time T rel1 . The qubit idle point is chosen to be in-between, and well
away from, the transition frequencies of resonators Ra and Rb;

2. A Gaussian-shape π/2-pulse with a full width at half maximum of 7 ns and phase ϕX or ϕY is
applied to Q1 in order to prepare the qubit in state |g+ eiϕX |e or |g+ eiϕY |e;

3. At the end of the π/2-pulse, a z-pulse is applied to Q1, which brings the qubit into resonance with
resonator Ra for a swap time

8 1/2g1a  27.68 ns. This swap operation maps the state in Q1 into Ra,
which is thus left in state |0+ ei(ϕX+δϕ

1a)|1 or in the orthogonal state |0+ ei(ϕY +δϕ
1a)|1. Here,

the phase δϕ1a is the dynamic phase accumulated during the z-pulse/swap operation. The phase

ϕX of the π/2-pulse is chosen to compensate the dynamic phase δϕ1a, so that ϕ
st
X = ϕX+δϕ1a = 0.

In this manner, Ra is effectively prepared in state |ψX = |0+ |1, where all terms of the density
matrix should be purely real, or in the orthogonal state |ψY  = |0+eiπ/2|1. As an important check
|ψX and |ψY  should remain orthogonal before and after transfer between different resonators;

4. Implementing the tomography technique described in Ref. 9, we measure the density matrix of
the states synthesized in Ra and deduce the corresponding Wigner function. The top and bottom
panels to the left in Fig. 3b in the main text show the resulting density matrices for state |ψX and
|ψY , respectively. The corresponding Wigner functions are shown in the top and bottom panels
to the left in Fig. 3c in the main text. The state fidelity for |ψX is  0.91 and for |ψY  is  0.92.
Owing to a slight miscalibration of the π/2-pulse and/or swap time into Ra, the off-diagonal terms
(red arrows in Fig. 3b in the main text) of the density matrix of |ψX are tilted by an angle
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Table Supplementary 1: Density matrix elements for |ψX and |ψY . Density matrices and corresponding Wigner
functions are shown in Fig. 3b,c (cf. main text). Only the elements for m,n = 0, 1 are reported here. The sample used
for these experiments differs from those used in the rest of the paper and is characterized by a higher density of strongly
coupled TLSs; the loss of population (1|ρ̂|1 element) in the preparation and transfer of each state is due to these TLSs.
Remarkably, the coherences (0|ρ̂|1 ≡ 1|ρ̂|0∗ elements) are only marginally affected by the TLSs.

0|ρ̂|0 0|ρ̂|1 ≡ 1|ρ̂|0∗ 1|ρ̂|1
|ψX in Ra 0.63 0.43+0.03i 0.33
|ψY  in Ra 0.61 0.04-0.44i 0.35
|ψX in Rb 0.87 0-0.14i 0.02
|ψY  in Rb 0.86 -0.08-0.15i 0.03

|ψX back in Ra 0.68 0.38+0.05i 0.24
|ψY  back in Ra 0.71 0.07-0.36i 0.20

|ϕstX |  4.30◦ and those of |ψY  by an angle |ϕstY |  4.75◦. Defining the orthogonality between

|ψX and |ψY  as X⊥Y ≡ |(90◦ − |ϕstY |)− (0◦ − |ϕstX |)|/90◦, we obtain X⊥Y st  0.995;

5. The states |ψX and |ψY  are then transferred to Rb by bringing Q1 again into resonance with Ra for
a swap time 1/2g1a and subsequently into resonance with Rb for a swap time 1/2g1b  23.89 ns. We
then measure again the density matrix for Ra to show that the resonator is left in the vacuum state.
The top and bottom panels in the middle of Fig. 3b in the main text show the resulting density
matrices for the resonator state after |ψX and |ψY  have been shuffled to Rb. The corresponding
Wigner functions are shown in the top and bottom panels in the middle of Fig. 3c in the main text.
The density matrices and Wigner functions clearly show that the resonator is now in the vacuum
state |0, with state fidelity  0.87 in the |ψX case and  0.86 in the |ψY  case;

6. After storing |ψX and |ψY  in Rb for a few nanoseconds, Q1 is brought into resonance with Rb for
the usual swap time 1/2g1b and finally into resonance with Ra for a swap time 1/2g1a. At the end of
this last swap, |ψX and |ψY  are back in Ra, accompanied by a total dynamic phase that depends
on the qubit detunings from the idle point and duration of the various z-pulse/swap operations. It
is only by coincidence that the dynamic phase in the experiments reported in the main text happens
to be close to 2π and, thus, the off-diagonal terms of the density matrix and the Wigner function
shown in the top panel to the right in Fig. 3b,c in the main text display a similar angle as those
in the top panel to the left in Fig. 3b,c (a similar argument applies to the matrices and Wigner
functions in the bottom panels to the left and right in Fig. 3b,c). In general, the total dynamic
phase accumulated during the transfer from Ra to Rb will have an arbitrary value. Consequently,
the critical check to assure that timing errors in the pulse sequence do not compromise the integrity
of the off-diagonal terms of the density matrices is to compare the orthogonality between |ψX and
|ψY  before and after the transfer. The orthogonality after the transfer to Rb is X⊥Y fin  0.958.

The overall transfer orthogonality is then given by (X⊥Y fin)/(X⊥Y st)  0.963. This result
demonstrates a high fidelity phase coherent transfer of photonic states between the two resonators.
In addition to a good orthogonality, we also note that the state fidelities for |ψX and |ψY  in Ra
after transfer through Rb are  0.84 and  0.81, respectively, which compare well to the state
fidelities for a |0 + |1 state generated in a single resonator architecture (cf. Ref. 1). The overall
transfer fidelity given by the ratio between the state fidelity after and before the transfer is  0.92
and  0.88 for |ψX and |ψY , respectively.

Table Supplementary 1 shows the density matrix elements for state |ψX and |ψY  at the various
stages of the shell game between resonators Ra and Rb.

5 Energy relaxation model of the two-resonator vacuum Rabi
swaps

We next discuss the energy relaxation mechanism of the two-resonator vacuum Rabi swaps shown in
Fig. 5d of the main text. The decay times for qubit Q1 and resonators Ra and Rb are shown in Fig. S. 4.
The resonators’ energy relaxation time is determined by preparing a one-photon Fock state |1 in the
resonator, storing it for a variable time, and then measuring by bringing a qubit on resonance with
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Figure Supplementary 4: Energy relaxation for qubit Q1 and resonators Ra and Rb. In all panels: Ppe is the
probability to find Qp in |e as a function of measurement delay time (i.e. the time an excitation is stored in a resonator or
qubit before readout). Full circles are data and solid magenta lines exponential fits to data. a, Measurement of the energy
relaxation of resonator Ra using qubit Q1 as a detector

10,11. b, Energy relaxation of qubit Q1. c, Same as in a, but for
resonator Rb.

the resonator, swapping the state into the qubit, and finally reading out the qubit state. The energy
relaxation times are obtained from a simple exponential fit, as reported in Table Supplementary 2. The
qubit and resonator energy relaxation times, as well as the other parameters listed in that table, are
used to numerically solve a Lindblad-type master equation13,14:

˙̂ρ =
1

i
( H1ρ̂− ρ̂ H1) +

3
k=1

L̂k ρ̂ , (S-2)

where ρ̂ is the total density matrix of the system, ˙̂ρ ≡ (∂/∂t) ρ̂ its time derivative, H1 is the Hamiltonian
of Eq. (1) (cf. Methods’ section in main text), L̂k is the Lindblad superoperator defined as L̂k ρ̂ ≡
γk(

Xkρ̂
X†
k − X†

k
Xk ρ̂/2 − ρ X†

k
Xk/2) and k ∈ N. The qubit and resonator decay rates are defined as

γ1 ≡ 1/T rela , γ2 ≡ 1/T rel1 and γ3 ≡ 1/T relb and the generating operators as X1 ≡ â, X†
1 ≡ â†, X2 ≡ σ̂−,

X†
2 ≡ σ̂+, X3 ≡ b̂ and X†

3 ≡ b̂†. We numerically solve Eq. (S-2) for the pulse sequence shown in Fig. 5a
(cf. main text), without accounting for the measurement process. The results are displayed in Fig. S. 5,
compared to the experimental data.

Figure Supplementary 5a,c shows the same data as in Fig. 5d (cf. main text), but for a transfer time
τ that is three times longer. The data shown in Fig. S. 5a,c were taken using a different device than
Fig. 5d, with longer qubit relaxation times. The exponential decay obtained by the simple harmonic mean
model (cf. main text) is superposed with the data, making evident the qualitative validity of the model.
Figure Supplementary 5b,d show the results of the numerical simulations of Eq. (S-2) corresponding
to the experimental data of Fig. S. 5a,c, respectively, with the amplitude of the simulations adjusted
to match the measured amplitudes. Data and simulations are in very good agreement, supporting the
simple harmonic mean decay model. In particular, the experimental decay time obtained by fitting the
data is  840 ns, from simulations  874 ns and from the harmonic mean model  896 ns. The slight
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Table Supplementary 2: Parameters for numerical simulations of two-resonator vacuum Rabi swaps. δ
is the qubit non-linearity, i.e. the frequency difference between the qubit ground-to-first excited state transition relative
to the first-to-second excited state transition12. The non-linearity has been used in the simulations to take into account

possible leakage outside of the qubit subspace. Tφ
a and Tφ

b
are the dephasing times for resonators Ra and Rb, respectively.

Since we want to study the energy relaxation of the two-resonator Rabi swaps, the qubit dephasing time Tφ
1 has been

neglected in the simulations. All the other parameters are defined in the main text.

Ra fa − g1a T rela Tφ
a

(GHz) (MHz) (ns) (ns)

6.340 17.95 3881  T rela

Q1 f1 δ − T rel1 Tφ
1

(GHz) (MHz) (ns) (ns)

6.563 204.23 507 −−

Rb fb − g
1b T relb Tφ

b
(GHz) (MHz) (ns) (ns)

6.815 20.25 3549  T relb

discrepancy between the experimental data and simulations for the low occupation probabilities (causing
an offset between data and simulations) is because the simulations do not account for the measurement
process. Note that we can safely assume that only qubit Q1 and resonator Ra, swapping for a variable
transfer time τ , contribute to the effective decay mechanism of the two-resonator Rabi dynamics. In fact,
the second resonator serves only as a mapping resonator, the state of which is measured with Q2 typically

after a time ∆τ2  T relb (cf. Fig. 5b,c in main text). In other words, examining the two-dimensional

plots of Fig. 5b,c we expect two distinct decay mechanisms. The first along the horizontal axis (∆τ1 and
∆τ2). This decay is practically negligible as this measurement is completed in  30 ns. The second is
along the vertical axis (τ) related to the Q1-Ra swaps, as explained above. A theoretical analysis of the
decay mechanisms characteristic for two-resonator dynamics in different regimes may be found in Ref.
15.
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Figure Supplementary 5: Numerical simulations of two-resonator Rabi swaps. a, Ra state dynamics measured
as the probability P1e to find Q1 in |e vs. time τ . Dark blue circles are data, solid magenta line a least-squares fit to data
and dashed black line the exponential harmonic mean decay. b, Simulation of the data in a, showing the resonator mean
photon number â†â vs. τ . c, Same as in a, but for Rb. Light green circles are data, solid magenta line a least-squares
fit to data and dashed black line the exponential harmonic mean decay. d, Same as in b, but for Rb.
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Figure Supplementary 6: “S-curve” calibrations for qubit Q1 and Q2. a, Dark blue down triangles connected
by a dark blue solid line: Tunnel probability as a function of measurement pulse amplitude for Q1 in the energy ground
state |g. Red up triangles connected by a red solid line: Tunnel probability as a function of measurement pulse amplitude
for Q1 in the energy excited state |e. Light green circles connected by a light green solid line: Visibility curve for Q1
obtained subtracting the S-curves for Q1 in |g and |e, respectively. The vertical dashed black line indicates the amplitude
of the measurement pulse set in the experiments described in the paper. The dark blue, light green and red horizontal
dashed lines (bottom to top) indicate the ground state measurement error Eg, the qubit visibility V and the excited state
measurement fidelity Fe, respectively. b, Same as in a, but for qubit Q2.

6 Correction for measurement errors

The data shown in the main text and here have been corrected for measurement errors, following the
procedure outlined in Ref. 16. This consists in performing a so-called “S-curve” calibration, where the
amplitude of the qubit measurement pulse is swept while the probability of the qubit tunneling out of
the metastable well (where the ground and excited qubit states |g and |e are confined) is measured.
The tunneling rate is lower for |g than for |e, allowing the two states to be discriminated. A tunneling
event is easily detected by means of the d.c. SQUID lithographically defined adjacent to each qubit
(cf. Fig. S. 1).

The S-curve calibrations for qubit Q1 and Q2 are shown in Fig. S. 6a,b, with the probability of
tunneling plotted versus the measurement pulse amplitude. In the experiments, the amplitude of the
measurement pulse was set to the value indicated by the vertical dashed black line. This gives the
probability of tunneling for a |g state close to  0.05, which we term the ground state measurement
error Eg. For the same measurement pulse amplitude, the probability for the |e state to tunnel, which
we term the excited state measurement fidelity Fe, is close to unity. The qubit visibility is defined as the
difference V = Fe − Eg. For qubit Q1 we find Eg  0.052, Fe  0.935 and V = 0.883. For qubit Q2 we
find Eg  0.038, Fe  0.947 and V = 0.909.

The correction for measurement errors is realized by re-scaling any measured excited state probability
Pe to Pe according to

Pe =
Pe − Eg

V
.

Given the good visibility of the qubits this correction is relatively small. We note that some of the exper-
iments reported here were performed with different devices characterized by slightly different visibilities,
but in all cases V was very close to 0.9.
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